

Scheme – 2023

Department of Mechanical Engineering

G. Pulla Reddy Engineering College (Autonomous): Kurnool

Accredited by NBA of AICTE and NAAC of UGC

Affiliated to JNTUA, Anantapuramu

SCHEME AND SYLLABUS for II Year B.Tech. Degree Course in MECHANICAL ENGINEERING

(Effective from the students admitted from the academic year 2023-24 onwards)

G. PULLA REDDY ENGINEERING COLLEGE (Autonomous): KURNOOL

MECHANICAL ENGINEERING FOUR YEAR B.TECH. DEGREE COURSE

(Effective for the students admitted from the academic year 2023-2024 onwards)

SCHEME OF INSTRUCTION AND EXAMINATION

III Semester Scheme 2023

S. No.	Category	Title	L/D	Т	P	Credits	CIA	End Exam Marks	Total Marks
1	BS & H	Numerical Methods, Probability and Statistics	2	1	0	3	30	70	100
2	BS & H	Universal Human Values	2	1	0	3	30	70	100
3	ES	Thermodynamics	2	0	0	2	30	70	100
4	PC	Mechanics of Solids	2	1	0	3	30	70	100
5	PC	Material Science and Metallurgy	3	0	0	3	30	70	100
6	PC	Mechanics of Solids and Materials Science Lab	0	0	3	1.5	30	70	100
7	PC	Computer-Aided Machine Drawing	0	0	3	1.5	30	70	100
8	ES	Design Thinking & Innovation	1	0	2	2	30	70	100
9	SEC	Python programming	0	1	2	2	30	70	100
		Total	12	4	10	21			

IV Semester Scheme 2023

S. No.	Category	Title	L/D	Т	P	Credits	CIA	End Exam Marks	Total Marks
1	BS & H	Production Economics and Financial Management	2	0	0	2	30	70	100
2	PC	Thermal Engineering	2	1	0	3	30	70	100
3	PC	Manufacturing processes	3	0	0	3	30	70	100
4	PC	Fluid Mechanics & Hydraulic Machines	2	1	0	3	30	70	100
5	PC	Theory of Machines	2	1	0	3	30	70	100
6	PC	Fluid Mechanics & Hydraulic Machines Lab	0	0	3	1.5	30	70	100
7	PC	Manufacturing processes Lab	0	0	3	1.5	30	70	100
8	SEC	Soft Skills	0	1	2	2	30	70	100
9	ES	Embedded Systems and IoT	0	0	2	1	30	70	100
10.	AC	Environmental Science	2	0	0	0	-	-	-
		Total	13	4	10	20			
	Mand	latory Community Service Project Internship of 0	8 wee	ks dura	tion d	luring Sun	nmer \	Vacation	

Mandatory Community Service Project Internship of 08 weeks duration during Summer Vacation

Category:

L/D : Lecture/Design/Drawing T/P : Tutorial / Practical CIA : Continuous Internal Assessment

BS&H : Basic Sciences & Humanities ES : Engineering Sciences PC : Professional Core

SEC : Skill Enhancement Course AC : Audit Course

NUMERICAL METHODS, PROBABILITY AND STATISTICS (NMPS)

III Semester:	Mechanical	Engiı	neeri	ng	Scheme: 2023					
Course Code	Category	Hou	ırs/W	/eek	Credits	Maximum Marks				
BS206	BS&H	L	Т	P	c	Continuous Internal Assessment	End Exam	TOTAL		
		2	1	0	3	30	70	100		
Sessional Exa	m Duration:	's			En	d Exam I	Ouration: 3 Hrs			

Cours	Course Outcomes: At the end of the course, students will be able to							
CO1:	Utilize numerical methods and interpolation							
CO2 :	Solve ordinary differential equations by numerical methods							
CO3 :	Identify discrete and continuous probability distributions							
CO4:	Apply the test of hypothesis for large samples.							
CO5:	Analyze the test of hypothesis for small samples.							

UNIT - I

Solution of Algebraic & Transcendental Equations: Introduction-Bisection method-Iterative method-Regula falsi method-Newton Raphson method.

Interpolation: Finite differences, Operators, relation between the operators; Newton's forward and backward interpolation formulae and Lagrange's interpolation formula.

UNIT - II

Numerical Integration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule.

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations- Euler's and Modified Euler's Methods – Runge – Kutta methods of second and forth order.

UNIT - III

Random variables & Probability Distributions: Random variables (discrete and continuous), probability density functions, properties, mathematical expectation.

Probability distributions - Binomial, Poisson approximation to the Binomial distribution and Normal distribution.

UNIT - IV

Test of Hypothesis for large samples: Formulation of null hypothesis, alternative hypothesis, the critical and acceptance regions, level of significance, types of errors. Test for single proportion, difference of proportions, Test for single mean and difference of means.

UNIT - V

Test of significance for small samples: Student t-test – test for single mean, difference of means and paired t-test, Testing of equality of variances (F – test), Chi-square (χ^2) - test for goodness of fit, Chi-square (χ^2) - test for independence of attributes.

Text Books:

- 1. B.S.Grewal [2012], Higher Engineering Mathematics, Khanna Publishers, New Delhi
- 2. K.V Iyengar and others [2013], Engineering Mathematics Vol-3, S.Chand & Co. New Delhi

Reference Books:

- **1.** S.C.Gupta & V.K.Kapoor [1987], Elements of Mathematical Statistics, S.Chand Publishers, New Delhi..
- **2.** N.P.Bali and others [2009], A Text book of Engineering Mathematics, Laxmi Publishers, New Delhi.

Online Resources:

- 1. https://onlinecourses.nptel.ac.in/noc24_ma54/preview
- 2. https://onlinecourses.nptel.ac.in/noc24_ma05/preview
- **3.** https://nptel.ac.in/courses/111105090

Question Paper Pattern:

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

UNIVERSAL HUMAN VALUES (UHV)

Course Code	Category	Hou	ırs/W	leek	ximum M	Marks			
HSM201	BS&H	L	T	P	C	Continuous Internal Assessment	End Exam	TOTAT	
		2	1	0	3	30	70	100	
Sessional Exa	m Duration:	2 Hr	'S			En	d Exam D	uration: 3 Hr	

Cours	Course Outcomes: At the end of the course, students will be able to							
CO1:	Define the terms like Natural Acceptance, Happiness and Prosperity							
CO2:	Identify one's self, and one's surroundings (family, society nature)							
CO3:	Apply what they have learnt to their own self in different day-to-day settings in real life							
CO4:	Relate human values with human relationship and human society.							
CO5 :	Justify the need for universal human values and harmonious existence							
CO6 :	Develop as socially and eco logically responsible engineers							

UNIT - I

Introduction to Value Education (6 lectures and 3 tutorials for practice session)

Lecture 1: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education)

Lecture 2: Understanding Value Education

Tutorial 1: Practice Session PS1 Sharing about Oneself

Lecture 3: self-exploration as the Process for Value Education

Lecture 4: Continuous Happiness and Prosperity-the Basic Human Aspirations

Tutorial 2: Practice Session PS2 Exploring Human Consciousness

Lecture 5: Happiness and Prosperity - Current Scenario

Lecture 6: Method to Fulfill the Basic Human Aspirations

Tutorial 3: Practice Session PS3 Exploring Natural Acceptance

UNIT - II

Harmony in the Human Being (6 lectures and 3 tutorials for practice session)

Lecture 7: Understanding Human being as the Co-existence of the self and the body.

Lecture 8: Distinguishing between the Needs of the self and the body

Tutorial 4: Practice Session PS4 Exploring the difference of Needs of self and body.

Lecture 9: The body as an Instrument of the self

Lecture 10: Understanding Harmony in the self

Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the self

Lecture 11: Harmony of the self with the body

Lecture 12: Programme to ensure self-regulation and Health

Tutorial 6: Practice Session PS6 Exploring Harmony of self with the body

UNIT - III

Harmony in the Family and Society (6 lectures and 3tutorials for practice session)

Lecture 13: Harmony in the Family-the Basic Unit of Human Interaction

Lecture 14: 'Trust' - the Foundational Value in Relationship

Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust

Lecture 15: 'Respect' – as the Right Evaluation

Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect

Lecture 16: Other Feelings, Justice in Human-to-Human Relationship

Lecture 17: Understanding Harmony in the Society

Lecture 18: Vision for the Universal Human Order

Tutorial 9: Practice Session PS9 Exploring Systems to fulfill Human Goal

UNIT - IV

Harmony in the Nature/Existence (4lectures and 2 tutorials for practice session)

Lecture 19: Understanding Harmony in the Nature

Lecture 20: Inter connectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature

Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature

Lecture 21: Realizing Existence as Co-existence at All Levels

Lecture 22: The Holistic Perception of Harmony in Existence

Tutorial 11: Practice Session PS11 Exploring Co-existence in Existence

UNIT - V

Implications of the Holistic Understanding – a Look at Professional Ethics (6 lectures and 3 tutorials for practice session)

Lecture 23: Natural Acceptance of Human Values

Lecture 24: Definitiveness of (Ethical) Human Conduct

Tutorial 12: Practice Session PS12 Exploring Ethical Human Conduct

Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order

Lecture 26: Competence in Professional Ethics

Tutorial 13: Practice Session PS13 Exploring Humanistic Models in Education

Lecture 27: Holistic Technologies, Production Systems and Management Models-Typical Case Studies

Lecture 28: Strategies for Transition towards Value-based Life and Profession

Tutorial 14: Practice Session PS14 Exploring Steps of Transition towards Universal Human Order

Text Books:

- **1.** R R Gaur, R Asthana, G P Bagaria, A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- **2.** R R Gaur, R Asthana, G P Bagaria, Teachers' Manual for A Foundation Course in Human Values and Professional Ethics,2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books:

- 1. Jeevan Vidya: Ek Parichaya, ANagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N.Tripathi, New Age Intl. Publishers, NewDelhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth-by Mohandas Karamchand Gandhi

Online Resources:

- 1. https://fdp-si.aicte-india.org/UHV II%20Class%20Notes%20&%20Handouts/UHV%20Handout%201-Introduction%20to%20Value%20Education.pdf
- 2. https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%202-Harmony%20in%20the%20Human%20Being.pdf
- https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%203-Harmony%20in%20the%20Family.pdf
- **4.** https://fdp-si.aicte-india.org/UHV%201%20Teaching%20Material/D3-S2%20Respect%20July%2023.pdf
- 5. https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%205-Harmony%20in%20the%20Nature%20and%20Existence.pdf

Question Paper Pattern:

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

THERMODYNAMICS (TD)

III Semester: 1	Mechanical	Engi	neeri	ng	Scheme: 2023				
Course Code	Category	Hou	ırs/V	/eek	Credits	Maximum Marks			
ME201	ES	L	T	P	c	Continuous Internal Assessment	End Exam	TOTAL	
		2	0	0	2	30	70	100	
Sessional Exa	m Duration:	2 Hr	's		End Exam Duration: 3 Hrs				

Cours	Course Outcomes: At the end of the course, students will be able to										
CO1:	Understand the importance of thermodynamic properties related to conversion of Heat energy into work.										
CO2 :	Apply the Zeroth and First Law of Thermodynamics.										
CO3:	Apply Second Law of Thermodynamics.										
CO4:	Analyze the Mollier charts, T-S and h-s diagrams, Steam calorimetry, Phase Transformations										
CO5:	Evaluate the COP of refrigerating systems and properties, processes of Psychrometry and sensible and latent heat loads.										

UNIT - I

Introduction: Thermodynamic System, boundary, Surrounding, control volume, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Cycle – Reversibility – Quasi static Process, Irreversible Process, Causes of Irreversibility.

UNIT - II

Work and Heat Transfer: Energy in State and in Transition, Types, Work and Heat, Point and Path function. Zeroth Law of Thermodynamics – PMM-I.

First Law of Thermodynamics: Joule's Experiment – Applications of First law of Thermodynamics, Enthalpy, Limitations of the First Law.

UNIT - III

Second Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence / Corollaries, PMM-II, Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance. Carnot's principle, Carnot cycle and its specialties, Thermodynamic scale of Temperature, Clausius Inequality.

Entropy and Availability: Principle of Entropy, Increase – Energy Equation, Availability and Irreversibility –Gibbs and Helmholtz Functions, Maxwell Relations.

UNIT - IV

Properties of Pure Substances: P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase, Dryness Fraction – Clausius – Clapeyron Equation Property tables. Mollier charts – Various Thermodynamic processes and energy Transfer – Steam Calorimetry.

UNIT - V

Refrigeration: Introduction, Vapour compression refrigeration system, Functions of components, Simple vapour absorption system, COP - Introduction to Refrigerants, Properties.

Psychrometry: Properties of atmospheric air, Psychometric chart, Psychometric processes, Simple problems, Simple air flow diagram for an Air-Conditioning system.

Text Books:

- 1. P. K. Nag, Engineering Thermodynamics, 5th Edition, Tata Mc.Graw Hill, 2013.
- **2.** Claus Borgnakke Richard E. Sonntag, Fundamentals of Thermodynamics, 7th Edition, Wiley, 2009.

Reference Books:

- 1. J.B.Jones, and R.E.Dugan, Engineering Thermodynamics, 1/e, Prentice Hall, 1995.
- **2.** Y.A.Cenge 1& M.A.Boles, Thermodynamics–An Engineering Approach,7/e, McGraw Hill, 2010
- 3. P.Chattopadhyay, Engineering Thermodynamics, 1/e, Oxford University Press, 2011
- 4. CP Arora, Refrigeration and Air-conditioning, 4/e, McGraw Hill, 2021.

Data Hand Book:

1. Sreenivasa Reddy, B. and Hemachandra Reddy, K, Thermal Data Handbook, IK International Publishers, Bangalore

Online Resources:

- 1. https://www.edx.org/learn/thermodynamics.
- **2.** https://archive.nptel.ac.in/courses/112/106/112106310.
- **3.** https://www.youtube.com/watch?v=7NI5P4KqrAs&t=1s
- **4.** https://kp.kiit.ac.in/pdf_files/02/Study-Material_3rd-Semester_Winter_2021_Mechanical-Engg.-_Thermal-Engineering-1_Abhijit-Samant.pdf
- **5.** https://www.coursera.org/learn/thermodynamics-intro

Question Paper Pattern:

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

MECHANICS OF SOLIDS (MOS)

Course Code Categ	TT-								
course coue cutog	ory Ho	urs/V	Veek	Credits	Ma	ximum M	arks		
ME202 PC	L	T	P	C	Continuous Internal Assessment	End Exam	TOTAL		
	2	1	0	3	30	70	100		
Sessional Exam Dura	tion: 2 H	rs		End Exam Duration: 3 Hrs					

Cours	Course Outcomes: At the end of the course, students will be able to						
CO1:	Compute the stresses and strains of axially loaded members and elastic constants.						
CO2:	Construct shear force and bending moment diagrams for simply supported beam, cantilever beam and overhanging beam under point load, uniformly distributed and uniformly varying load.						
CO3:	Calculate the bending stress and shear stresses in a beam.						
CO4:	Calculate deflection for simply supported beam, cantilever beam and overhanging beam under point load, Uniformly distributed and uniformly varying loads using Macaulay's method and double integration method and Compute the shear stress and twist of a shaft under torsional loading.						
CO5:	Determine stresses in thin cylinders, thick cylinders, compound cylinders, buckling load for a column.						

UNIT - I

SIMPLE STRESSES & STRAINS: Elasticity and plasticity – Types of stresses & strains—Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio & volumetric strain – Bars of varying section – composite bars – Temperature stresses- Complex Stresses - Stresses on an inclined plane under different uni axial and biaxial stress conditions - Principal planes and principal stresses - Mohr's circle - Relation between elastic constants, Strain energy – Resilience – Gradual, sudden, impact and shock loadings.

UNIT - II

SHEAR FORCE AND BENDING MOMENT: Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, u.d.l, uniformly varying loads and combination of these loads– Point of contra flexure– Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT - III

FLEXURAL STRESSES: Theory of simple bending, Derivation of bending equation, Determination of bending stresses – section modulus of rectangular, circular, I and T sections– Design of simple beam sections.

SHEAR STRESSES: Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I and T sections.

UNIT - IV

DEFLECTION OF BEAMS: Bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay's methods – Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, UDL and UVL.

TORSION: Introduction – Derivation - Torsion of Circular shafts - Pure Shear - Transmission of power by circular shafts, Shafts in series, Shafts in parallel.

UNIT - V

THIN AND THICK CYLINDERS: Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and volumetric strains – changes in dia, and volume of thin cylinders– Thin spherical shells. Wire wound thin cylinders. Lame's equation – cylinders subjected to inside & outside pressures – compound cylinders.

COLUMNS: Buckling and Stability, Columns with Pinned ends, Columns with other support Conditions, Limitations of Euler's Formula, Rankine's Formula

Text Books:

- 1. S.S. Bhavikatti , Strength of materials, Third Edition, Vikas Publishing House Pvt. Ltd., New Delhi
- 2. B.C. Punmia, Ashok. K. Jain and Arun. K. Jain, Mechanics of Materials, Lakshmi Publishers, New Delhi
- 3. S.S. Rattan, Strength of materials, Tata Mc Graw Hill Publishing Company Ltd., New Delhi
- 4. G H Ryder, Strength of materials, Palgrave Macmillan publishers India Ltd, 1961.
- 5. R.K. Banasal, A Text book of Strength of materials, Laxmi Publications, Chennai, 2018

Reference Books:

- 1. U.C. Jindal, Strength of Materials, Pearson Education, 2017.
- 2. Gere & Timoshenko, Mechanics of materials, CBS publications, 2004.
- 3. Timoshenko, Strength of Materials Part-I & II, CBS Publishers, 2004.
- 4. Andrew Pyteland Ferdinand L. Singer, Strength of Materials, Longman Publications, 1990.
- **5.** Popov, Mechanics of Solids, New Pearson Education, 2015.

Online Resources:

- 1. https://onlinecourses.nptel.ac.in/noc19_ce18/preview.
- **2.** https://youtube/iY_ypychVNY?si=310htc4ksTQJ8Fv6
- **3.** https://www.youtube.com/watch?v=WEy939Rkd_M&t=2s
- **4.** https://www.classcentral.com/course/swayam-strength-of-materials-iitm-184204
- **5.** https://www.coursera.org/learn/mechanics-1
- **6.** https://www.edx.org/learn/engineering/massachusetts-institute-of-technology-mechanical-behavior-of-materials-part-1-linear-elastic-behavior
- **7.** https://archive.nptel.ac.in/courses/112/107/112107146/

Question Paper Pattern:

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

MATERIAL SCIENCE AND METALLURGY (MSM)

III Semester:	Mechanical	Engi	neeri	ng			,	Scheme: 2023	
Course Code	Category	Hot	ırs/W	/eek	Credits	Ma	ximum M	arks	
ME203	PC	L	T	P	C	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	3 30		100	
Sessional Exa	m Duration:	2 H1	'S			En	d Exam D	uration: 3 Hrs	
	tand concep	ots of	f cry	stal s	structures,	characteristics			
CO1: Crystal Materia		rectio	ns, I	Miller	Indices fo	or Planes and	crystal in	perfections of	

CO2:

CO3:

CO4:

CO5:

alloys and solid solutions.

Environment and Safety

Metallurgy Processes and their Applications.

Demonstrate the deformation processes of metals and the concept of pure metal,

Interpreting the phase diagrams, those are important to Select Alloys for Engineering Applications and Understand the Iron –Iron Carbide Phase Diagram and to improve

Understand the general characteristics, composition, response to heat treatments and Describe the Ferrous and Non-Ferrous metals and their applications in view of

Demonstrate the concepts of composites, methods of metal Powder Production, Powder

UNIT - I

Mechanical properties of materials for applications in Engineering Industries.

Structure of Metals: Introduction to Material Science and Engineering, Classification of Materials. Crystal Structures, Space lattice, Unit cell, Seven crystal structures and Bravies lattices, Principal Metallic Crystal structures (SC,BCC,FCC,HCP) and properties (Coordination number, Effective number of atoms, Atomic packing factor) Crystallographic directions in cubic unit cells, Miller indices for Crystallographic planes in cubic cells, Planar atomic density, Linear atomic density. Crystal Imperfections – Point imperfections (point defect), line imperfections (Dislocations) Dislocation types and surface imperfections.

UNIT - II

Slip and Twinning: Classification of deformations, Elastic and plastic deformation, Mechanism of plastic deformations - Slip and Twinning, Hot working and cold working, Recovery, Re crystallization and grain growth, Creep, Stages of creep, Factors influencing creep.

Pure metal, alloy and Solid solutions: Notion of pure metal and alloy, types of solid solutions, Substitutional and Interstitial solid solutions, Hume Rothery's rules.

UNIT - III

Equilibrium Phase Diagrams: Introduction, Interpretation of Binary equilibrium Phase diagrams. Gibbs Phase rule. Binary Isomorphous alloy system (Cu-NI Phase Diagram), Lever Rule, Binary Eutectic alloy system (Lead-Tin Phase Diagram), Binary Eutectoid, Peritectic, Peritectoid systems, Binary monotectic system, Simple problems on Binary phase diagrams.

Iron Carbon Equilibrium Diagram: Cooling curve of pure iron, construction and interpretation of Fe-Fe3C diagram, Effect of alloying elements on Fe-Fe3C diagram.

UNIT - IV

Heat Treatment of Steels: Purpose of heat treatment, different heat treatment processes, Annealing, Normalizing, Hardening, and Tempering, TTT diagrams, Hardenability, factors affecting hardenability, determination of hardenability. Surface hardening methods (Carburizing, Flame hardening, Induction Hardening), Cryogenic treatment.

Ferrous metals and Alloys: Purpose of alloying, classification of steels- Plain Carbon steels, High carbon steels - Stainless steels and its types, Tool steels (High speed steels). Properties and applications of various types of Cast irons viz Grey cast iron, White cast iron, Nodular (or)Ductile iron, Malleable iron and Spheroidal graphite cast iron.

Non Ferrous Metals and Alloys: Properties and applications of important non ferrous metals and alloys like Copper, Aluminum, Nickel, Titanium, Magnesium, Lead, Tin and Super alloys.

UNIT - V

Composites and Advanced materials: Definition, Classification of Composites, types of matrix materials and reinforcements, applications of Composites. Smart materials.

Powder Metallurgy: Introduction, Methods of producing metal powders (Milling, Atomization - stages of Powder metallurgy -Mixing, Blending, Compacting, Sintering. Other compaction methods: Cold Isostatic pressing, Hot isostatic pressing. Applications of powder metallurgy, advantages of Powder Metallurgy, examples of typical components produced by Powder Metallurgy.

Text Books:

- **1.** William D Callister, Material science and Engineering adopted by R. Bala Subramaniam Wiley India Pvt Ltd New Delhi
- 2. William F. Smith, Foundations of Material Science and Engineering, McGraw Hill, New York
- 3. V. Raghavan, Material Science and Engineering, PHI Publishers, New Delhi

Reference Books:

- 1. Sidney H. Avner, Introduction to Physical Metallurgy. TMH Publications, New Delhi
- **2.** Donald R. Askel Pradeep P. Fulay, Essentials of Material Science Engineering, CENGAGE Learning
- **3.** Dr. V.D. Kodgire, S.V. Kodgire, Material Science and Metallurgy, Everest Publications, New Delhi
- 4. U.C.Jindal, Material Science and Metallurgy, Pearson Publications.

Online Resources:

- 1. https://archive.nptel.ac.in/courses/113/106/113106032/
- 2. https://www.edx.org/learn/mechanics/massachusetts-institute-of-technology-mechanical-behavior-of-materials-part-3-time-dependent-behavior.
- **3.** https://www.youtube.com/watch?v=9Sf278j1GTU
- **4.** https://www.coursera.org/learn/fundamentals-of-materials-science
- **5.** https://www.coursera.org/learn/material-behavior.

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

MECHANICS OF SOLIDS & MATERIAL SCIENCE LAB (MSMS (P))

III Semester: l	Mechanical	Engir	neeri	ng	Scheme: 2023				
Course Code	Category	Hou	ırs/W	leek	Credits	Ma	ximum N	larks	
ME204	PC	L	Т	P	C	Continuous Internal Assessment	End Exam	TOTAL	
		0	0	3	1.5	30	70	100	

End Exam Duration: 3 Hrs

Course Outcomes: At the end of the course, students will be able	Course	Outcomes:	At the end	l of the course.	students wi	ll be able to
---	--------	------------------	------------	------------------	-------------	---------------

- **CO1:** Understand the stress strain behavior of different materials.
- **CO2:** Evaluate the hardness of different materials
- **CO3:** Explain the relation between elastic constants and hardness of materials.
- **CO4:** Identify various microstructures of steels and cast irons
- **CO5:** Evaluate hardness of heat treated steels.

LIST OF EXPERIMENTS

MECHANICS OF SOLIDS LAB

- **1.** Tensile test
- 2. Bending test on
 - a) Simply supported beam
 - b) Cantilever beam
- **3.** Torsion test
- **4.** Hardness test
 - a) Brinell's hardness test
 - b) Rock well hardness test
- **5.** Test on springs
- 6. Impact test
 - a) Charpy test
 - b) Izod test

MATERIAL SCIENCE LAB

- **7.** Preparation and study of the Microstructure of pure metals.
- **8.** Preparation and study of the Microstructure of Mild steel, medium carbon steels, and High carbon steels.
- **9.** Study of the Microstructures of Cast Irons.
- 10. Study of the Micro structures of Non-Ferrous alloys.
- 11. Study of the Microstructures of Heat treated steels
- 12. Harden ability of steels by Jominy End Quench Test.
- 13. To determine hardness of a given metal after various heat treatment process

Virtual lab:

- **1.** To investigate the principal stresses of and ob at any given point of a structural element or machine component when it is in a state of plane stress. (https://virtual-labs.github.io/exprockwell-hardness-experiment-iiith/objective.html)
- **2.** To find the impact resistance of mild steel and cast iron. (https://sm-nitk.vlabs.ac.in/exp/izod-impact-test).
- **3.** To find the impact resistance of mild steel. (https://sm-nitk.vlabs.ac.in/exp/charpy-impact-test/index.html)
- **4.** To find the Rockwell hardness number of mild steel, cast iron, brass, aluminum and spring steel etc. (https://sm-nitk.vlabs.ac.in/exp/rockwell-hardness-test)
- **5.** To determine the indentation hardness of mild steel, brass, aluminum etc. using Vickers hardness testing machine. (https://sm-nitk.vlabs.ac.in/exp/vickers-hardness-test)

COMPUTER AIDED MACHINE DRAWING (CAMD (P))

III Semester:	Mechanical	Engi	neeri	ng	Scheme: 2023				
Course Code	Category	Hou	ırs/V	Veek	Credits	Maximum Marks			
ME205	PC	PC	L	T	P	С	Continuous Internal Assessment	End Exam	TOTAL
		0	0	3	1.5	30	70	100	
End Exam Du	ration: 3 Hr	s							

Course Outcomes: At the end of the course, students will be able to

- **CO1:** Demonstrate the conventional representations of materials and machine components.
- **CO2:** Model riveted, couplings and key joints using CAD system.
- **CO3:** Create solid models and sectional views of machine components.
- **CO4:** Generate solid models of machine parts and assemble them.
- CO5: Translate 3D assemblies into 2D drawings.

LIST OF EXPERIMENTS

The following are to be done by any 2D software package

Conventional representation of materials and components:

Detachable joints: Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint with washer and locknut, stud joint, screw joint and foundation bolts.

Riveted joints: Drawing of rivet, lap joint, butt joint with single strap, single riveted, double riveted double strap joints.

Welded joints: Lap joint and T joint with fillet, butt joint with conventions.

Keys: Taper key, sunk taper key, round key, saddle key, feather key, wood ruffkey.

Couplings: rigid–Muff, flange; flexible–bushed pin-type flange coupling, universal coupling, Oldham's' coupling.

The following exercises are to be done by any 3D software package

Sectional views:

Creating solid models of complex machine parts and sectional views.

Assembly drawings: (Any four of the following using solid model software)

Steam Engine parts – Stuffing box, Cross head eccentric, carburetor, piston, connecting rod **Machine Tool Parts** - Lathe tool post, tool head of shaping machine, tail-stock,

Other parts - machine vice, gate valve, screw jack, plumber block, axle bearing, pipe vice, clamping device, Geneva cam, universal coupling.

Production drawing:

Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly drawings and prepare manufacturing drawing with dimensional and geometric tolerances.

Text books:

- **1.** Machine Drawing by K.L.Narayana, P. Kannaiah and K. Venkat Reddy, New Age International Publishers, 3/e, 2014
- 2. Machine drawing by N.Sideshwar, P.Kannaiah, V.V.S.Sastry, TMH Publishers. 2014.
- **3.** Machine drawing with Auto CAD, Goutham Pohit & Goutham Ghosh 1st Indian Printing Pearson Education, 2005
- **4.** Computer Aided Machine Drawing, by S. Trymbaka Murthy, CBS Publishers, New Delhi 2008.
- **5.** Machine Drawing includes AutoCAD , Ajeet Singh, TMH Publishers, 2017.

Reference Books:

- **1.** Cecil Jensen, Jay Helsel and Donald D.Voisinet, Computer Aided Engineering Drawing, Tata McGraw-Hill, NY, 2000.
- **2.** James Barclay, Brain Griffiths, Engineering Drawing for Manufacture, Kogan Page Science, 2003.
- 3. N. D. Bhatt, Machine Drawing, Charotar Publishers, 50/e, 2014.

Online Resources:

- 1. https://eeedocs.wordpress.com/wp-content/uploads/2014/02/machinedrawing.pdf
- **2.** https://archive.nptel.ac.in/courses/112/105/112105294/

DESIGN THINKING & INNOVATION (DTI)

III/IV Semester Branches	er: Common	all					Scheme: 2023	
Course Code	Category	ırs/W	7eek	Credits	Maximum Marks			
ESCM01	ES	L	T	P	C	Continuous Internal Assessment	End Exam	TOTAL
		1	0	2	2	30	70	100

End Exam Duration: 3 Hrs

Cours	Course Outcomes: At the end of the course, students will be able to						
CO1:	Define the concepts related to Design thinking						
CO2:	Explain the fundamentals of Design Thinking and innovation						
CO3:	Apply the design thinking techniques for solving problems in various sectors						
CO4:	Analyse to work in a multidisciplinary environment						
CO5:	Formulate specific problem statements of real time issues						

UNIT - I

Introduction to Design Thinking: Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT - II

Design Thinking Process: Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brainstorming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT - III

Innovation: Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations- Creativity to Innovation- Teams for innovation- Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT - IV

Product Design: Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications- Innovation towards product design-Case studies

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

UNIT - V

Design Thinking in Business Processes: Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs- Design thinking for Startups- Defining and testing Business Models and Business Cases- Developing & testing prototypes.

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Text Books:

- 1. Tim Brown, Change by design, Harper Bollins (2009)
- 2. Idris Mootee, Design Thinking for Strategic Innovation, 2013, John Wiley & Sons

Reference Books:

- 1. David Lee, Design Thinking in the Classroom, Ulysses press
- 2. Shrutin N Shetty, Design the Future, Norton Press
- **3.** William Lidwell, Universal Principles of Design- Kritinaholden, Jill Butter.
- **4.** Chesbrough.H, The Era of Open Innovation 2013

Online Resources:

- 1. https://nptel.ac.in/courses/110/106/110106124/
- **2.** https://nptel.ac.in/courses/109/104/109104109/
- **3.** https://swayam.gov.in/nd1_noc19_mg60/preview

PYTHON PROGRAMMING (PYP)

III/IV	III/IV Semester: Common for all								Scheme: 2023			
Branc	Branches except CE											
Cours	Course Code Category		Ηοι	ırs/W	Veek	Credits	Ma	ximum M	arks			
SCCM02		SEC	L	Т	P	C	Continuous Internal Assessment	End Exam	TOTAL			
			0	1	2	2	30	70	100			
End E	End Exam Duration: 3 Hrs											
Cours	e Outco	mes: At the o	end o	f the	cours	e, students	will be able to					
CO1:							ables, data ty solve given prol		rol structures,			
CO2 :	Develop	programs u	sing l	Pytho	n fun	ctions, stri	ngs and lists.					
CO3 :	Identify	the applicat	ions (of dic	tionar	ries, tuples	and sets in pyt	hon progra	amming.			
CO4:	Implem	ent files and	objec	t orie	ented	programmi	ng concepts.					
CO5:	_	ent common	-	sed F	ython	libraries	and framework	ks such a	s JSON, XML,			

UNIT - I

Introduction: History of Python Programming Language, Thrust Areas of Python, Installing Anaconda Python Distribution, Installing and Using Jupyter Notebook. Parts of Python Programming Language: Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and Associativity, Data Types, Indentation, Comments, Reading Input, Print Output, Type Conversions, the type () Function and Is Operator, Dynamic and Strongly Typed Language.

Control Flow Statements: if statement, if-else statement, if...elif...else, Nested if statement, while Loop, for Loop, continue and break Statements,

Exception Handling: Catching Exceptions Using try and except Statement.

Sample Experiments:

- 1. Write a program to find the largest element among three Numbers.
- 2. Write a Program to display all prime numbers within an interval
- **3.** Write a program to swap two numbers without using a temporary variable.
- **4.** Demonstrate the following Operators in Python with suitable examples.
 - i) Arithmetic Operators ii) Relational Operators iii) Assignment Operators iv) Logical Operators v) Bitwise Operators vi) Ternary Operator vii) Membership Operators viii) Identity Operators
- **5.** Write a program to add and multiply complex numbers
- **6.** Write a program to print a multiplication table of a given number.

UNIT - II

Functions: Built-in functions, Commonly Used Modules, Function Definition and Calling the function, return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments.

Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, and Formatting Strings.

Lists: Creating Lists, Basic List Operations, Indexing and Slicing in Lists, Built-In Functions Used on Lists, List Methods, del Statements.

Sample Experiments:

7. Write a program to define a function with multiple return values.

- **8.** Write a program to define a function using default arguments
- **9.** Write a program to find the length of the string without using any library functions.
- **10.** Write a program to check if the substring is present in a given string or not.
- 11. Write a program to perform the given operations on a list: a) Addition b). Insertion c). Slicing
- **12.** Write a program to perform any 5 built-in functions by taking any list.

UNIT - III

Dictionaries: Creating Dictionary, Accessing and Modifying key: value Pairs in Dictionaries, Built-In Functions Used on Dictionaries, Dictionary Methods, del Statement.

Tuples and Sets: Creating Tuples, Basic Tuple Operations, tuple () Function, Indexing and Slicing in Tuples, Built-In Functions Used on Tuples, Relation between Tuples and Lists, Relation between Tuples and Dictionaries, Using zip() Function, Sets, Set Methods, Frozen set

Sample Experiments:

- **13.** Write a program to create tuples (name, age, address, college) for at least two members and concatenate the tuples, and print the concatenated tuples.
- **14.** Write a program to count the number of vowels in a string (No control flow allowed).
- **15.** Write a program to check if a given key exists in a dictionary or not.
- **16.** Write a program to add a new key-value pair to an existing dictionary.
- **17.** Write a program to sum all the items in a given dictionary.

UNIT - IV

Files: Types of Files, Creating and Reading Text Data, File Methods to Read and Write Data, Reading and Writing Binary Files, Pickle Module, Reading and Writing CSV Files, Python OS and os.path Modules.

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, Constructor Method, Classes with Multiple Objects, Class Attributes Vs Data Attributes, Encapsulation, Inheritance, Polymorphism.

Sample Experiments:

- **18.** Write a program to sort words in a file and put them in another file. The output file should have only lower-case words, so any upper-case words from source must be lowered.
- **19.** Python program to print each line of a file in reverse order.
- **20.** Python program to compute the number of characters, words and lines in a file.
- **21.** Write a program to create, display, append, insert and reverse the order of the items in the array.
- **22.** Write a program to add, transpose and multiply two matrices. Write a Python program to create a class that represents a shape. Include methods to calculate its area and perimeter. Implement subclasses for different shapes like circle, triangle, and square.

UNIT - V

Introduction to Data Science: Functional Programming, JSON and XML in Python, NumPy with Python, Pandas.

Sample Experiments:

- **23.** Python program to check whether a JSON string contains complex object or not.
- **24.** Python Program to demonstrate NumPy arrays creation using array () function.
- **25.** Python program to demonstrate use of ndim, shape, size, dtype.
- **26.** Python program to demonstrate basic slicing, integer and Boolean indexing.
- 27. Python program to find min, max, sum, cumulative sum of array
- **28.** Create a dictionary with at least five keys and each key represent value as a list where this list contains at least ten values and convert this dictionary as a pandas data frame and explore the data through the data frame as follows:
 - a) Apply head () function to the pandas data frame
 - b) Perform various data selection operations on Data Frame
- **29.** Select any two columns from the above data frame, and observe the change in one attribute with respect to other attribute with scatter and plot operations in matplotlib

Text Books:

- 1. Gowri Shankar S, Veena A., Introduction to Python Programming, CRC Press
- 2. Python Programming, S Sridhar, J Indumathi, V M Hariharan, 2nd Edition, Pearson, 2024
- **3.** Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

Reference Books:

- 1. Python 3 for Absolute Beginners, Tim Hall and J-P Stacey, Apress.
- 2. Python -The Ultimate Beginner's Guide!, Andrew Johansen.

Online Resources:

- 1. https://www.coursera.org/learn/python-for-applied-data-science-ai
- 2. https://www.coursera.org/learn/python?specialization=python#syllabus

PRODUCTION ECONOMICS AND FINANCIAL MANAGEMENT (PEFM)

IV Semester: I	Mechanical	Engir	1eeri:	ng				Scheme: 2023
Course Code	Course Code Category Hours/Week					Credits Maximum Marks		
HSM203	BS&H	L	т	P	C	Continuous Internal Assessment	End Exam	TOTAL
		2	0	0	2	30	70	100
Sessional Exam Duration: 2 Hrs						En	d Exam I	Ouration: 3 Hrs

Cours	Course Outcomes: At the end of the course, students will be able to									
CO1:	1: Understand the demand and its nature									
CO2:	Understand elements of costs and depreciation used in industry practices to manufacture a product									
CO3:	3: Analyze transactions and prepare final accounts of profit and loss, balance sheet									
CO4:	CO4: Understand financial management tools like time value of money and ratio analysis									
CO5 :	CO5: Understand the capital budgeting and evaluation techniques									
	UNIT – I									

Introduction to Economics: Definition, Nature of economics, Methods of economics, Demand analysis, Types of demand, Factors determining demand, law of demand-Assumptions & exceptions, law of diminishing marginal utility, Elasticity of demand, Factors governing elasticity of demand

UNIT - II

Elements of Cost: Elements of cost - Material cost, Labour cost, Overheads (Factory overheads, Administrative overheads, Selling and distribution overheads), Methods of allocation of overheads

Depreciation: Definition, Causes of depreciation, Methods of calculating depreciation - Straight line method of depreciation, Diminishing balance method of depreciation, Sinking fund method of depreciation

UNIT - III

Accountancy: Introduction, Double entry Book keeping, preparation of Journal, Ledger, Trial balance

Final Accounts: Preparation of Trading, Profit & loss account, and Balance sheet with simple adjustments pertaining to closing stock, depreciation, income & expenses

UNIT - IV

Financial Management: Time value of money, Present value of - single cash flow, multiple cash flows and Annuity, Future value of - single cash flow, multiple cash flows and Annuity Financial Statement Analysis - Ratio analysis, Liquidity ratios (current ratio, & quick ratio), Profitability ratios (Gross profit ratio, Net profit ratio, ROE, ROCE, P/E ratio & EPS), Activity ratios (Inventory turnover ratio, Debtors turnover ratio), Solvency ratios (Dept- Equity ratio, Interest coverage ratio)

UNIT - V

Capital budgeting: Capital budgeting & its significance, capital budgeting evaluation techniques- Payback period method, Accounting rate of return (ARR) method, Net present value (NPV) method, Profitability index method, Internal Rate of Return (IRR) method- (Simple problems)

Text Books:

1. K.K. Dewatt, Modern Economic Theory, Shyamlal Charitable Trust, New Delhi

- **2.** Prasanna Chandra, Fundamentals of Financial Management, TMH Publishers, New Delhi
- 3. S.P. Jain and K.L. Narang, Financial Accounting, Kalyani Publications, Ludhiana
- **4.** Banga and Sharma, Mechanical Estimation and Costing, Khanna Publishers, New Delhi

Reference Books:

1. M.Y Khan and P.K Jain, Financial Management, TMH Publishers, New Delhi

Online Resources:

- 1. Financial management for managers: https://nptel.ac.in/courses/110/107/110107144/#
- 2. Managerial accounting: https://nptel.ac.in/courses/110/101/110101003/
- **3.** Financial Accounting: https://nptel.ac.in/courses/110/101/110101131/
- **4.** Financial statement analysis and reporting: https://nptel.ac.in/courses/110/107/110107073/
- **5.** Financial accounting: https://nptel.ac.in/courses/110/106/110106147/
- **6.** Engineering economic analysis: https://nptel.ac.in/noc/courses/noc18/SEM1/noc18-me35/
- 7. Introduction to managerial Economics: https://nptel.ac.in/courses/110/101/110101005/
- **8.** Introduction to microeconomics: https://onlinecourses.nptel.ac.in/noc21_hs52/preview

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

THERMAL ENGINEERING (TE)

IV Semester: I	Mechanical	Engir	1eeri:	ng				Scheme: 2023	
Course Code	Category	Hou	ırs/V	/eek	Credits Maximum Marks				
ME206	PC	L	T	P	С	Continuous Internal Assessment	End Exam	TOTAL	
		2	1	0	3	30	70	100	
Sessional Exa	Sessional Exam Duration: 2 Hrs					End Exam Duration: 3 Hrs			

Cours	Course Outcomes: At the end of the course, students will be able to									
CO1:	Analyze the air standard cycles and I.C. engines to evaluate the thermodynamic performance									
CO2:	Analyze the vapour power cycles and describe the operation principles of fire tube and water tube boilers									
CO3:	Analyze the performance of steam nozzles and steam condensers									
CO4:	Solve the problems on impulse and reaction turbines using velocity triangles									
CO5:	Analyze the performance of reciprocating compressors using parameters such as efficiency and pressure ratio									

UNIT - I

Air Standard Cycles: Stirling cycle, Ericsson cycle, and Brayton cycle. Analysis of Otto, Diesel and Dual cycles, Comparison of Otto, Diesel and Dual cycles

Basics of I.C. Engines: Engine components, Working principle of engines- two stroke and four stroke engines, SI and CI Engines, valve and port timing diagrams, First law analysis of engine cycle

UNIT - II

Vapour Power Cycles: Rankine cycle, Comparison of Rankine and Carnot cycles, Modified Rankine cycle, Methods of increasing the efficiency of Rankine cycle - Reheat and Regenerative Rankine cycles

Steam Generators: Introduction, Classification of boilers, Fire tube boilers - Cochran boiler, Lancashire and Locomotive boiler, Water tube boilers - Babcock, Wilcox and Stirling boilers, Comparison between fire tube and water tube boilers, High pressure boilers - Lamont, Loeffler, Benson boilers, Advantages of high pressure boilers, functions of Boiler mountings and Accessories.

UNIT - III

Steam Nozzles: Isentropic flow through Nozzles, Velocity and Discharge of steam through Nozzle, Condition for maximum discharge through Nozzle, Critical pressure ratio, Effect of friction in Nozzle, Efficiency of Nozzle

Steam Condensers: Introduction, Classification of condensers, Jet condensers, Surface condensers, Comparison between Jet and Surface condensers, Determination of mass of cooling water in a condenser, Vacuum efficiency and Condenser efficiency.

UNIT - IV

Steam Turbines:

Impulse type- Principle of operation of impulse turbine, De-laval Turbine – its features, compounding of impulse turbine, Velocity diagram for single stage impulse turbines, Effect of friction, power developed, axial thrust, diagram efficiency, condition for maximum efficiency.

Reaction Type- Principle of operation, Velocity diagram, Degree of reaction, Parson's reaction turbine – its features, Comparison of reaction and impulse turbines

UNIT - V

Reciprocating Compressors: Classification of compressors, working principle of reciprocating compressors single stage and multi stage compressors with and without clearance, Advantages of multistage compression, inter cooling, minimum work condition for two stage compression, various efficiencies of multi stage compressors, simple problems on reciprocating compressors

Text Books:

- 1. Rajput, R. K., Thermal Engineering, Lakshmi Publications, New Delhi.
- 2. Nag, P. K., Engineering Thermodynamics, TMH Publishers, New Delhi
- 3. Ganeshan, V., Internal Combustion Engines, TMH Publishers, New Delhi
- 4. Rajput, R.K., Applied Thermodynamics, Lakshmi Publications, New Delhi.

Reference Books:

- 1. Ballaney, P. L. Thermal Engineering, Khanna Publishers, New Delhi
- 2. Mahesh. M. Rathore, Thermal Engineering, McGraw Hill Pubishers, New Delhi
- 3. Vasandhani, V. P. and Kumar, D. S. Heat Engineering, Metropolitan Books, New Delhi
- 4. Gupta, S. C, Thermal Engineering, Pearson Education, New Delhi

Data Hand Book:

1. Sreenivasa Reddy, B. and Hemachandra Reddy, K, Thermal Data Handbook, IK International Publishers, Bangalore

Online Resources:

- 1. https://onlinecourses.nptel.ac.in/noc23_me31/preview
- 2. https://onlinecourses.nptel.ac.in/noc22_me113/preview
- **3.** https://onlinecourses.nptel.ac.in/noc24_me03/preview

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

MANUFACTURING PROCESSES (MFP)

IV Semester: I	Mechanical	Engir	neeri	ng				Scheme: 2023		
Course Code	Category	ry Hours/Week Credits Maximu					ximum N	Marks		
ME207	PC	L	т	P	c	Continuous Internal Assessment	End Exam	TOTAL		
		3	0	0	3	30	70	100		
Sessional Exa	Sessional Exam Duration: 2 Hrs					En	d Exam I	Ouration: 3 Hrs		

Cours	Course Outcomes: At the end of the course, students will be able to								
CO1:	Apply the fundamental principles of casting in practical applications and explain different special casting methods								
CO2 :	Identify suitable bulk forming technique for making a component								
CO3 :	Classify different welding methods with brief introduction to brazing and soldering								
CO4 :	Identify the applications of sheet metal forming and additive manufacturing processes								
CO5 :	Illustrate the applications of plastic processing techniques								
	UNIT – I								

Casting: Steps involved in making a casting – Advantages of casting and its applications. Patterns and Pattern making – Types of patterns – Materials used for patterns, pattern allowances and their construction, Molding, different types of cores, Principles of Gating, Risers, casting design considerations. Methods of melting and types of furnaces, Solidification of castings and casting defects- causes and remedies. Basic principles and applications of special casting processes - Centrifugal casting, Die casting, Investment casting and shell molding.

UNIT - II

Plastic deformation in metals. Hot working and Cold working.

Bulk forming processes: Rolling–fundamentals, types of rolling mills and products, Forces in rolling. Forging-Types of Forging, forging defects and remedies; Extrusion: Types of extrusion – Forward extrusion, backward extrusion, Impact extrusion, Hydrostatic extrusion; Drawing - Wire drawing and Tube drawing.

UNIT - III

Welding: Classification of welding processes, types of welded joints and their characteristics, Gas welding, Different types of flames and uses, Oxy – Acetylene Gas cutting. Basic principles of Arc welding, Manual metal arc welding, submerged arc welding, TIG & MIG welding. Electro–slag welding. Resistance welding, Friction welding, Forge welding, Explosive welding; Thermit welding, Plasma Arc welding, Laser welding, electron beam welding, Soldering & Brazing. Introduction to heat affected zones in welding, welding defects – causes and remedies

UNIT - IV

Sheet metal forming - Blanking and piercing, Deep drawing, Stretch forming, Bending, Spring back and its remedies, Coining, Spinning, Types of presses and press tools.

Additive manufacturing - Steps in Additive Manufacturing (AM), Classification of AM processes, Advantages and Applications

UNIT - V

Processing of Plastics: Classification of plastics, thermoplastics, thermosetting plastics and applications, injection, blow molding, calendaring, thermoforming, compression molding and Transfer Molding.

Text Books:

- 1. P. N. Rao, Manufacturing Technology -Vol I, 5/e, McGraw Hill Education, 2018.
- 2. Sharma P.C., A Text book of Production Technology, 8/e, S Chand Publishing, 2014

Reference Books:

- 1. A.Ghosh & A.K. Malik, Manufacturing Science, East West Press Pvt. Ltd, 2010.
- **2.** Kalpak jain S and Steven RS chmid, Manufacturing Processes for Engineering Materials, 5/e, Pearson Publications, 2007.
- 3. R.K.Jain, Production Technology, Khanna Publishers, 2022.
- **4.** Lindberg and Roy, Processes and materials of manufacture, 4/e, Prentice Hall India Learning Private Limited, 1990.
- **5.** H.S.Shaun, Manufacturing Processes, 1/e, Pearson Publishers, 2012.
- **6.** W AJ Chapman, Workshop Technology, 5/e, CBS Publishers & Distributors Pvt. Ltd, 2001.
- 7. Hindustan Machine Tools, Production Technology, Tata McGraw Hill Publishers, 2017.
- **8.** Ian Gibson, David W Rosen, Brent Stucker., Additive Manufacturing Technologies: 3DPrinting, Rapid Prototyping, and Direct Digital Manufacturing, 2/e, Springer, 2015.

Online Resources:

- 1. https://www.edx.org/learn/manufacturing/massachusetts-institute-of-technology-fundamentals-of-manufacturing-processes
- **2.** https://onlinecourses.nptel.ac.in/noc21_me81/preview
- **3.** www.coursera.org/learn/introduction-to-additive-manufacturing-processessera
- **4.** https://archive.nptel.ac.in/courses/112/103/112103263/
- **5.** https://elearn.nptel.ac.in/shop/nptel/principles-of-metal-forming-technology/?v=c86ee0d9d7ed

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

FLUID MECHANICS & HYDRAULIC MACHINES (FMHM)

IV Semester: I	Mechanical	Engir	1eeri:	ng				Scheme: 2023
Course Code	Category	Hou	ours/Week Credits Maximum Mark					larks
ME208	PC	L	T	P	C	Continuous Internal Assessment	End Exam TOTAL	
		2	1	0	3	30	70	100
Sessional Exam Duration: 2 Hrs					End Exam Duration: 3 Hrs			

Cours	Course Outcomes: At the end of the course, students will be able to								
CO1:	Understand the basic concepts of fluid properties.								
CO2 :	Estimate the mechanics of fluids in static and Dynamic conditions.								
CO3:	Calculate loss in fluid flows and Apply the Boundary layer theory								
CO4:	Estimate the hydro dynamic forces of jet on vanes in different positions.								
CO5:	Understand the working Principles and performance evaluation of hydraulic pump and								
550.	turbines.								

UNIT - I

Fluid statics: Dimensions and units: physical properties of fluids - specific gravity, viscosity and its significance, surface tension, capillarity, vapor pressure. Atmospheric, gauge and vacuum pressure, Measurement of pressure - Manometers - Piezometer, U-tube, inverted and differential manometers. Pascal's & hydrostatic laws.

UNIT - II

Fluid kinematics: Introduction, flow types. Equation of continuity for one dimensional flow, circulation and vorticity, Stream line, path line and streak lines and stream tube. Stream function and velocity potential function, differences and relation between them.

Fluid dynamics: surface and body forces–Euler's and Bernoulli's equations for flow along a stream line, momentum equation and its applications, force on pipe bend.

UNIT - III

Closed conduit flow: Reynold's experiment - Darcy Weisbach equation- Minor losses in pipes- pipes in series and pipes in parallel-total energy line – hydraulic gradient line.

Boundary Layer Flow: Laminar boundary layer, Turbulent boundary layer, Displacement thickness, momentum thickness and energy thickness

UNIT - IV

Basics of turbo machinery: hydro dynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow Over radial vanes.

Hydraulic Turbines: classification of turbines, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies, Geometric similarity, Unit and specific quantities, characteristic curves, governing of turbines, draft tube-theory.

UNIT - V

Centrifugal pumps: classification, working, work done – manometric head- losses and efficiencies-specific speed- pumps in series and parallel-performance characteristic curves, cavitation & NPSH.

Reciprocating pumps: Working, Discharge, slip, indicator diagrams.

Text Books:

- 1. RKBansal, Fluid Mechanics and Hydraulic Machines, 10/e, Laxmi Publications (P)Ltd, 2019
- 2. Rajput, Fluid Mechanics and Hydraulic Machines, S Chand & Company, 2016
- **3.** Y.A. Cengel, J.M. Cimbala, Fluid Mechanics, Fundamentals and Applications, 6/e, McGraw Hill Publications, 2019.

Reference Books:

- **1.** P N Modi and S M Seth, Hydraulics & Fluid Mechanics including Hydraulics Machines, Standard Book House, 2017.
- **2.** Dixon, Fluid Mechanics and Thermodynamics of Turbomachinery, 7/e, Elsevier Publishers, 2014.
- $\textbf{3.}\ D.S. Kumar, Fluid Mechanics and Fluid Power Engineering, SKK ataria \& Sons, 2013$
- **4.** D.RamaDurgaiah, Fluid Mechanics and Machinery, 1/e, New Age International, 2002

Online Resources:

- 1. https://archive.nptel.ac.in/courses/112/105/112105206/
- **2.** https://archive.nptel.ac.in/courses/112/104/112104118/
- **3.** https://www.edx.org/learn/fluid-mechanics
- **4.** https://onlinecourses.nptel.ac.in/noc20_ce30/previewnptel.ac.in
- **5.** www.coursera.org/learn/fluid-powerera

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

THEORY OF MACHINES (TOM)

IV Semester: I	Mechanical	Engir	1eeri:	ng				Scheme: 2023
Course Code	Category	Hot	rs/Week Credits Maximum Marks					
ME209	PC	L	T	P	c	Continuous Internal Assessment	End Exam	TOTAL
			2	1	0	3	30	70
Sessional Exa	m Duration:	2 Hr	s			En	d Exam I	Ouration: 3 Hrs

Cours	Course Outcomes: At the end of the course, students will be able to									
CO1:	Understand four bar mechanism, single slider crank mechanism, double slider crank mechanism and their inversions and solve problems on Universal joint.									
CO2:	Determine Velocity and acceleration of points in - four bar mechanism, single slider crank mechanism and quick return motion mechanism by drawing velocity and acceleration diagrams.									
CO3 :	Find the effect of gyrogonic counts on core plane, thin car and two wheeler and Colve									
CO4:	Understand the concept of balancing of rotating masses, and Construct cam profile for knife edge, roller, flat faced follower with different machines.									
CO5:	Solve problems on free, forced, undamped, damped vibrations and calculate fluctuation of speed in flywheel.									

UNIT - I

Simple Mechanisms: Classification of mechanisms – Basic kinematic concepts and definitions, Degree of freedom, mobility, Grashof's law, kinematic inversions of four bar chain and slider crank chains, Quick return mechanism, Universal Joint.

UNIT - II

Plane and motion analysis: velocity and acceleration analysis of simple mechanisms using velocity and acceleration diagrams, graphical velocity analysis using instantaneous centers, Coriolis component of acceleration.

UNIT - III

Gyroscope: Principle of gyroscope, gyroscopic effect in an aero plane, ship, car and two wheeler, simple problems

Gear Profile: Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting – helical, bevel, worm, rack& pinion gears, epicyclic and regular gear train kinematics.

UNIT - IV

Balancing of Rotating masses: Need for balancing, balancing of single mass and several masses in different planes using graphical method.

Cams: Classification of cams and followers- Terminology and definitions – Displacement diagrams –Uniform velocity, parabolic, simple harmonic and cycloidal motions, cam profile for knife edge, roller and flat face follower.

UNIT - V

Vibrations: Introduction, degree of freedom, types of vibrations, free natural vibrations, Newton method and energy method for single degree of freedom. Damped vibrations- under damped, critically damped; and over damped systems, forced vibrations without damping in single degree of freedom; Vibration isolation and transmissibility.

Turning Moment Diagrams and Flywheels: Turning moment diagrams for steam engine, I.C engine and Multi Cylinder Engine. Crank effort – coefficient of fluctuation of energy, coefficient of fluctuation of speed – Functions of FlyWheel, size of FlyWheel

Text Books:

- 1. S. S. Rattan, Theory of Machines, TMH Publishers, New Delhi.
- 2. Sadhu Singh, Theory of Machines, Pearson Education, New Delhi.
- 3. R. K. Bansal and J. S. Brar, Theory of Machines, Laxmi Publications (P), Ltd., New Delhi.
- 4. P.L. Ballaney, Theory of Machines, Khanna Publishers, New Delhi.

Reference Books:

- 1. Farazdak Haideri, Dynamics of Machinery, Nirali Prakashan, Pune.
- **2.** John J. Uicker Jr, Gordon R. Pennock , Joseph E. Shigley, Theory of Machines and Mechanisms, Oxford Higher Education.
- 3. G. K. Groover, Mechanical Vibrations, Nem Chand & Bros.
- **4.** Robert L. Norton, Design of Machinery- An Introduction to Synthesis and Analysis of Mechanisms and Machines, Mc Graw Hill Higher Education, New York.
- 5. Willaim T. Thomson, Theory of Vibration with Applications, Prentice Hall.

Online Resources:

- **1.** https://nptel.ac.in/courses/112/101/112101096/
- **2.** https://nptel.ac.in/courses/112/104/112104114/

Sessional Exam:

The question paper for Sessional Examination shall be for 40 marks. The question paper shall consist of Four questions and all questions are compulsory. Question No.1 shall contain Five compulsory short answer questions for a total of Ten marks. Question No.2 to 4 shall be EITHER/OR Type for Ten marks each. Student shall Answer any one of them. Each of these questions may contain sub-questions.

End Examination:

FLUID MECHANICS & HYDRAULIC MACHINES LAB (FMHM (P))

IV Ser	nester: I	Mechanical :	Engin	eerii	ıg			-	Scheme: 2023		
Cours	e Code	Category	Hou	ırs/W	eek	Credits	Maximum Marks				
ME210		PC	L	T	P	C	Continuous Internal Assessment	End Exam	TOTAL		
			0	0	3	1.5	30	70	100		
End E	xam Du	ration: 3 Hr	s			•					
Cours	e Outco	mes: At the o	end of	the c	cours	e, students	will be able to				
CO1:	Demons	strate the de	vices	used	for m	easuring flo	ow.				
CO2:	: Compute major losses in pipes.										
CO3:	Illustrat	te the operat	ing pa	arame	eters	of turbines.					
CO4:	Explain	the working	of di	fferen	t type	es of pumps	S.				
CO5:	Explain	the devices	used	for m	easui	ring flow.					
				LIS	T OF	EXPERIM	ENTS				
1.	Impact	of jets on Va	nes.								
2.		ance Test on		n W/h							
3.		ance Test on				entrifugel D	umn				
4 .		ance Test on					-				
5.		ance Test on					mp.				
6.		tion of Ventu		_	itilig i	ump.					
7.		tion of Orific									
8.		nation of fric			for a	given nine	ine				
9.							ntraction/enla	rgement in	a nineline		
10.		flow meter.	.S OI 11	icau u	iuc to	- sudden co		igement in	a pipeinie.		
11.			s of h	end d	1110 to	Flhows on	d Bends in a pi	ineline			
12.							mall orifice by		end method		
13.		stration on K				arge ior a s	man office by t		leau method		
14.		stration on F									
Virtua		stration on r	ancis	5 Tull	JIIIC						
1.		ly different	natter	າາຣຸດ	f a fl	ow through	n a nine and	correlate	them with the		
	Reynold	•	-	of	the	_			/Virtual-Fluid-		
	Laborat	ory/reynolds	s/intro	oduct	ion.h	tml)			,		
2.			otal	Ene		at diffe	-		nture meter.		
3.							/bernoulli/intr		ntml). g different flow		
5.			٠ -	,			ratory/pitot/in		0		
4.							surface under p				
	submer	ge condition.	(http	s://n	ne.iitį	p.ac.in/Virt	ual-Fluid-				
		ory/cop/intr									
5.	(https:/			tual-I		Laboratory	/notch/introdu	a triang action.htm	1)		
6.	nitk.vlal	termine th bs.ac.in/exp	/impa		-jet).	of impac					
7.		termine fr ndex.html.	iction	in	pi	pes. (http	os://fm-nitk.vla	abs.ac.in/e	exp/friction-in-		

MANUFACTURING PROCESSES LAB (MFP (P))

IV Ser	nester: I	Mechanical 1	Engir	eerir	ng				Scheme: 2023
	e Code	Category		rs/W		Credits	Ma	ximum M	arks
ME211		PC	L	T	P	C	Continuous Internal Assessment	End Exam	TOTAL
			0	0	3	1.5	30	70	100
End E	xam Du	ration: 3 Hrs	S						
Cours	e Outco	mes: At the e	end of	the o	cours	e, students	will be able to		
CO1:	_	sand mould			g.				
CO2 :	Develop	different We	eld joi	nts					
CO3 :	Fabrica	te the compo	nents	s usir	ng var	rious manu	facturing techn	iques.	
CO4 :	Explain	the processe	es of 3	3d Pri	inting	ζ.			
				LIS	T OF	EXPERIM	ENTS		
1.	Design	and making	of nat	tern					
		Single piece							
		Split pattern							
2.	-	roperties test	_						
	•	Sieve analys	•	y san	ıd)				
	•	Clay conten		44					
	•	Moisture con Strength tes			eeion	test & She	ar teat)		
	,	Permeability	•	inpres	331011	test & blice	ii testj		
3.		preparation							
	,	Dumble							
_		Gear blank							
4.		tylene Gas w							
5.		tylene Gas c							
6.		metal arc w Lap joint	elding	S					
	,	Butt joint							
7.		e weldments	using	g TIG	/MIG	welding			
8.	To weld	thin sheets	using	Spot	weld	ing machin	e		
9.	Injection	n Molding							
10.	Blow Mo	olding							
11.	Demons	stration of mo	etal ca	asting	g				
12.	Demons	stration of 3D) prin	ting					
13.	Study o	f deep drawii	ng an	d exti	rusio	n operations	S		
Virtua	ıl lab:								
1.		•			_		ng through den nd-casting-proc		_
2.							velding setup. (/index.html).	https://vi	rtual-
3.	(https:/		s.ac.i	n/exp	p/sim	-	s (FDM) delling-process	3)	
4.	- , ,	/altair.com/i			•				
5.	https://	virtual-labs.	githu	b.io/	exp-s	imulation-c	artesian-syster	n-dei/thec	ory.html

SOFT SKILLS (SS)

III /IV Semester: Common for all									Scheme: 2023	
	Branches Course Code Category Hours/Week						s Maximum Marks			
SCCM01		SEC	L	T	P	С	Continuous Internal Assessment	End Exam	TOTAL	
			0	1	2	2	30	70	100	
End E	xam Du	ration: 3 Hr	s							
Cours	e Outcor	mes: At the	end o	f the	cours	e, students	will be able to			
CO1:							n engineering a		l fields through	
CO2:	Develop		esent	ation	skill	s to meet	industry standa		bling clear and	
CO3:	Develop the ability to identify and employ a variety of problem solving and decision									
CO4:	_					_	nd stress mar emotional well-	_	techniques to	
CO5 :	Underst		velop						themselves in a	

UNIT - I

Soft Skills & Communication Skills

Soft Skills - Introduction, Need - Mastering Techniques of Soft Skills - Communication Skills -Significance, process, types - Barriers of communication - Improving techniques.

Activities:

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought self-expression – articulating with felicity.

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources) - Stake holders Management.

Interpersonal Skills- Group Discussion - Debate - Team Tasks - Book and film reviews by groups - Group leader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Extempore- brief addresses and speeches convincing- negotiatingagreeing and disagreeing with professional grace.

Non-verbal communication - Public speaking - Mock interviews - presentations with an objective to identify non-verbal clues and remedy the lapses on observation.

UNIT - II

Presentation Skills

Types of presentations-Delivery techniques - Engaging the audience - Handling Q&A and feedback - Research Content - Visual aids and materials.

Activities:

Poster Presentation

Power Point Presentation

Oral Presentation

UNIT - III

Problem Solving & Decision Making: Meaning & features of Problem Solving - Managing Conflict - Conflict resolution - Team building - Effective decision making in teams - Methods & Styles

Activities:

Placing a problem which involves conflict of interests, choice and views - formulating the problem – exploring solutions by proper reasoning – Discussion on important professional, career and organizational decisions and initiate debate on the appropriateness of the decision.

UNIT - IV

Stress Management: Self-awareness –Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing opportunities for the participants to narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

UNIT - V

Corporate Etiquette – Etiquette- Introduction, concept, significance - Corporate etiquette - meaning, modern etiquette, benefits - Global and local culture sensitivity - Gender Sensitivity - Etiquette in interaction- Email etiquette - Cell phone etiquette - Dining etiquette - Netiquette - Job interview etiquette - Corporate grooming tips - Overcoming challenges

Activities

Providing situations to take part in the Role Plays where the students will learn about bad and good manners and etiquette - Group Activities to showcase gender sensitivity, dining etiquette etc. - Conducting mock job interviews - Case Study - Business Etiquette Games

Text Books:

- 1. Mitra Barun K, Personality Development and Soft Skills, Oxford University Press, Pap/Cdr edition 2012
- **2.** Dr Shikha Kapoor, Personality Development and Soft Skills: Preparing for Tomorrow, I K International Publishing House, 2018

Reference Books:

- **1.** Sharma, Prashant, Soft Skills: Personality Development for Life Success, BPB Publications 2018.
- 2. Alex K, Soft Skills S.Chand & Co, 2012 (Revised edition)
- 3. Gajendra Singh Chauhan & Sangeetha Sharma, Soft Skills: An Integrated Approach to Maximise Personality Published by Wiley, 2013
- **4.** Pillai, Sabina & Fernandez Agna, Soft Skills and Employability Skills, Cambridge University Press, 2018
- 5. Soft Skills for a Big Impact (English, Paperback, Renu Shorey) Publisher: Notion Press
- **6.** Dr. Rajiv Kumar Jain, Dr. Usha Jain, Life Skills (Paperback English) Publisher: Vayu Education of India, 2014

Online Resources:

- 1. https://youtu.be/DUIsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-bOO1_q
- **2.** https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- 3. https://youtu.be/-Y-R9hD17lU
- **4.** https://youtu.be/gkLsn4ddmTs
- **5.** https://youtu.be/2bf9K2rRWwo
- **6.** https://onlinecourses.nptel.ac.in/noc24_hs15/preview
- 7. https://onlinecourses.nptel.ac.in/noc21_hs76/preview

EMBEDED SYSTEMS & IOT (ESI)

IV Se	IV Semester: Mechanical Engineering Scheme: 2023											
Cours	se Code	Category	Hou	ırs/W	eek	Credits	Maximum Marks					
ME212		PC	L	T	P	C	Continuous Internal Assessment	End Exam	TOTAL			
			0	0	2	1	30	70	100			
End E	xam Du	ration: 3 Hrs	S									
Cours							will be able to					
CO1:	<u> </u>											
CO2 :	Establis	sh Serial Con	nmun	icatio	n lin	k with Ardu	iino					
CO3 :	Analyse	basics of S	P I int	terfac	e.							
CO4:		tand the con reness in im						necessary	protocols and			
CO5 :	Realize	the revolutio	n of i	ntern	et in	mobile devi	ces, cloud and	sensor ne	tworks			
				1.10		DWDDDIS						
				LIS	T OF	EXPERIM	ENTS					
Embe	dded Sys	stems Exper	imen	ts: (A	iny 5	experiment	s from the follo	wing)				
1.	Measure	e Analog sign	al fro	m Te	mper	ature Senso	or.					
2.	Generat	te P W M out	put.									
3.	Drive si	ngle characte	er gen	eratio	on on	Hyper Terr	ninal					
4.	Drive a	given string	on Hy	per 1	`ermi	nal.						
5.	Full dup	o lex Link est	ablis	hmen	t usir	ng Hyper te	rminal.					
6.	Drive a	given value o	on a 8	B bit I	DAC c	onsisting o	f SPI.					
7.	Drive St	epper motor	using	g Ana	log G	PIOs.						
Inter	net of Th	ings Experi	ment	s: (Ar	1у 5 е	xperiments	from the follow	ving)				
1.	Getting	started with	Rasp	berry	Pi, Ir	nstall Raspi	an on your SD	card.				
2.	-	,				-	nvironments) for ice Using Rasp		spberry Pi and			
3.		late the dista LED function		_	dista	ince sensor						
4.					ne sei	rvices throu	igh the use of p	ublic APIs	s and SDKs.			
5.	Study a	nd Install ID	E of A	Arduii	no an	d different	types of Arduin	о.				
6.	Study a	nd Implemer	nt Zigl	bee P	rotoco	ol using Arc	luino / Raspbe	rry Pi.				
7.	Calcula	te the distan	ce usi	ing di	stanc	ce sensor U	sing Arduino.					
8.	Basic Ll	ED functiona	lity U	sing	Ardui	ino and Noo	le MCU.					
9.	Calcula	te the moistu	ıre co	ntent	in th	e soil using	g Arduino and I	Node MCU	•			
10.	Calcula	te the distan	ce usi	ing di	stanc	e sensor U	sing Node MCU	•				
11.	Basic Ll	ED functiona	lity U	sing	Node	MCU.						
Text	Books:											
1.	Embedde	ed Systems A	rchite	ecture	е –Ву	Tammy No	ergaard, Elsevi	er Publica	tions, 2013.			
2.	Embedde	ed Systems- l	By Sh	ibu. I	K.V-T	ata Mc Gra	w Hill Educatio	n Private	Limited, 2013.			

Embedded System Design, Frank Vahid, Tony Givargis, John Wiley Publications, 2013.

Embedded Systems – Lyla B.Das-Pearson Publications, 2013.

3.

ENVIRONMENTAL SCIENCE (ES)

III /IV Semester: Common for all									Scheme: 2023
Branc	Branches								
Cours	se Code	Category	Hours/Week			Credits	Ma	Maximum Marks	
AC201		AC	L	Т	P	C	Continuous Internal Assessment	End Exam	TOTAL
			2	0	0	0			
Cours	e Outcor	mes: At the o	end of	the	cours	e, students	will be able to		
CO1:		_					n his area of wo		stand the need
CO2:	Underst	tand the imp	ortan	ce of	Ecos	ystem and	conservation of	biodiversi	ty
CO3:	Understand the problems due to environmental pollution with remedial measures and								
CO4:	Underst	tand about s	ustai	nable	deve	lopment an	d acts to addre	ss environ	mental issues
CO5:	Appreci health.	ate the use	of I	` & 1	relate	d technolo	gy to conserve	environn	nent & human
	UNIT – I								

Multidisciplinary Nature of Environmental Studies: Definition, Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources – Natural resources and associated problems. Forest resources – Use and over-exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people. Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems. Food resources – World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer, pesticide problems, water logging, salinity, case studies. Energy resources – solar, wind and nuclear energy resources.

UNIT - II

Ecosystems: Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers. Energy flow in the ecosystem – Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and functions of the forest and aquatic (pond and ocean) ecosystems.

Biodiversity and its Conservation: Introduction, Definition: genetic, species and ecosystem diversity. Values of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. India as a mega-diversity nation—Hot-spots of biodiversity—Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts—Endangered and endemic species of India—Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT - III

Environmental Pollution: Definition, cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Noise pollution
- d. Nuclea rhazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution – Pollution case studies. Disaster management: floods, earth quake and cyclone.

UNIT - IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting – Environmental ethics. Global issues and possible solutions – Climate change, global warming, acid rain and ozone layer depletion – Case Studies. Consumerism and waste products. Environment Protection Acts –Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act. Issues involved in enforcement of environmental legislation – Public awareness.

UNIT - V

Human Population and the Environment: Population growth, Population explosion – Family Welfare Programmes – Environment and human health. Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health.

Field Work: Visit to a local area to document environmental assets River/forest/grassland/hill/mountain – Visit to a local polluted site – Urban/Rural/Industrial/Agricultural study of common plants, insects, and birds – river, hill slopes, etc.

Text Books:

- **1.** C. P. Kaushik and Anubha Kaushik, "Environmental Studies" New Age International (P) Ltd., New Delhi.
- **2.** Erach Bharucha, "Textbook of Environmental Studies for Undergraduate Courses" University Grants Commission, Universities Press.
- 3. Y. Anjaneyulu "Introduction to Environmental Sciences", BS Publications, Hyderabad.
- **4.** R. Rajagopalan, "Environmental Studies", Oxford University Press, Chennai.
- 5. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company.

Reference Books:

- 1. Benny Joseph, "Environmental Studies", Tata McGraw Hill, New Delhi.
- **2.** Decksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- **3.** M. Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 4. Palaniswamy, "Environmental Studies", Pearson Education.
- 5. J. P. Sharma, "Comprehensive Environmental Studies", Laxmi Publications.
- **6.** Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science", Prentice Hall of India Private limited.